\(\int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx\) [466]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 326 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}} \]

[Out]

2*b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*(A*a^2+8*A*b^2-6*B*a*b)*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d
*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/3*(A*a^2-4*A*b^2+3*B*a*b)*sin(d*x+c)*(a+b*
sec(d*x+c))^(1/2)/a^2/(a^2-b^2)/d/sec(d*x+c)^(1/2)-2/3*(5*A*a^2*b-8*A*b^3-3*B*a^3+6*B*a*b^2)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^
3/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {4115, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (a^2 A+3 a b B-4 A b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-6 a b B+8 A b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (-3 a^3 B+5 a^2 A b+6 a b^2 B-8 A b^3\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(a^2*A + 8*A*b^2 - 6*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[S
ec[c + d*x]])/(3*a^3*d*Sqrt[a + b*Sec[c + d*x]]) - (2*(5*a^2*A*b - 8*A*b^3 - 3*a^3*B + 6*a*b^2*B)*EllipticE[(c
 + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sq
rt[Sec[c + d*x]]) + (2*b*(A*b - a*B)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]
]) + (2*(a^2*A - 4*A*b^2 + 3*a*b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)*d*Sqrt[Sec[c + d
*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4115

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[b*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(
a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*
x])^n*Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(m
 + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-a^2 A+4 A b^2-3 a b B\right )+\frac {1}{2} a (A b-a B) \sec (c+d x)-b (A b-a B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right )+\frac {1}{4} a \left (a^2 A+2 A b^2-3 a b B\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (a^2 A+8 A b^2-6 a b B\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^3}-\frac {\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (a^2 A+8 A b^2-6 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.03 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.77 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 (b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \left (\left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \left (a^2 \left (a^2 A+2 A b^2-3 a b B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+\left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )\right )\right )+a (a-b) (a+b) \left (b \left (a^2 A-4 A b^2+3 a b B\right )+a A \left (a^2-b^2\right ) \cos (c+d x)\right ) \sin (c+d x)\right )}{3 a^3 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^{3/2}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*((a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*(a^2*(a^2*A + 2*A*b
^2 - 3*a*b*B)*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + (-5*a^2*A*b + 8*A*b^3 + 3*a^3*B - 6*a*b^2*B)*((a + b)*El
lipticE[(c + d*x)/2, (2*a)/(a + b)] - b*EllipticF[(c + d*x)/2, (2*a)/(a + b)])) + a*(a - b)*(a + b)*(b*(a^2*A
- 4*A*b^2 + 3*a*b*B) + a*A*(a^2 - b^2)*Cos[c + d*x])*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]
)^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2603\) vs. \(2(358)=716\).

Time = 18.99 (sec) , antiderivative size = 2604, normalized size of antiderivative = 7.99

method result size
parts \(\text {Expression too large to display}\) \(2604\)
default \(\text {Expression too large to display}\) \(2937\)

[In]

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3*A/d/a^3/(a+b)/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c)+1)*
(-5*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+8*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(
d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos
(d*x+c)+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+6*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b
*cos(d*x+c)+8*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(
d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c)-10*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+16*Ell
ipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3+2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b
))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+12*EllipticF(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*a^2*b+16*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2+((a-b)/(a+b))^(1/2)*a^3*sin(d*x+c)-
3*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)-4*((a-b)/(a+b))^(1/2)*a*b^2*sin(d*x+c)-5*EllipticE(((a-b)/(a+b))^(1/2)*
(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*a^2*b*sec(d*x+c)+8*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)+EllipticF(((a-b)/(a+b))^(1
/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*a^3*sec(d*x+c)+6*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)+8*EllipticF(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)-4*((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+
c)-8*((a-b)/(a+b))^(1/2)*b^3*tan(d*x+c))+2*B/d/((a-b)/(a+b))^(1/2)/(a+b)/a^2*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2
-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(((a-b)/(a+b))^(1/2)*a^2*(1-cos
(d*x+c))^3*csc(d*x+c)^3-2*((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^3*csc(d*x+c)^3+(-(a*(1-cos(d*x+c))^2*csc(d*x+
c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b
)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2+2*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-co
s(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/
2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*cs
c(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2+2*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a
-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*b^2-((a-b)/(a+b))^(1/2)*a^2*(-cot(d*x+c)+csc(d*x+c))-2*((a-b)/(a+b))^(1/2)*a*b*(-cot(d
*x+c)+csc(d*x+c))-2*((a-b)/(a+b))^(1/2)*b^2*(-cot(d*x+c)+csc(d*x+c)))/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-co
s(d*x+c))^2*csc(d*x+c)^2-a-b)/(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.18 (sec) , antiderivative size = 792, normalized size of antiderivative = 2.43 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left (3 i \, A a^{4} b - 15 i \, B a^{3} b^{2} + 16 i \, A a^{2} b^{3} + 12 i \, B a b^{4} - 16 i \, A b^{5} + {\left (3 i \, A a^{5} - 15 i \, B a^{4} b + 16 i \, A a^{3} b^{2} + 12 i \, B a^{2} b^{3} - 16 i \, A a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (-3 i \, A a^{4} b + 15 i \, B a^{3} b^{2} - 16 i \, A a^{2} b^{3} - 12 i \, B a b^{4} + 16 i \, A b^{5} + {\left (-3 i \, A a^{5} + 15 i \, B a^{4} b - 16 i \, A a^{3} b^{2} - 12 i \, B a^{2} b^{3} + 16 i \, A a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (3 i \, B a^{4} b - 5 i \, A a^{3} b^{2} - 6 i \, B a^{2} b^{3} + 8 i \, A a b^{4} + {\left (3 i \, B a^{5} - 5 i \, A a^{4} b - 6 i \, B a^{3} b^{2} + 8 i \, A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, B a^{4} b + 5 i \, A a^{3} b^{2} + 6 i \, B a^{2} b^{3} - 8 i \, A a b^{4} + {\left (-3 i \, B a^{5} + 5 i \, A a^{4} b + 6 i \, B a^{3} b^{2} - 8 i \, A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left ({\left (A a^{5} - A a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + {\left (A a^{4} b + 3 \, B a^{3} b^{2} - 4 \, A a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{9 \, {\left ({\left (a^{7} - a^{5} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - a^{4} b^{3}\right )} d\right )}} \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/9*(sqrt(2)*(3*I*A*a^4*b - 15*I*B*a^3*b^2 + 16*I*A*a^2*b^3 + 12*I*B*a*b^4 - 16*I*A*b^5 + (3*I*A*a^5 - 15*I*B
*a^4*b + 16*I*A*a^3*b^2 + 12*I*B*a^2*b^3 - 16*I*A*a*b^4)*cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2
 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(-3*
I*A*a^4*b + 15*I*B*a^3*b^2 - 16*I*A*a^2*b^3 - 12*I*B*a*b^4 + 16*I*A*b^5 + (-3*I*A*a^5 + 15*I*B*a^4*b - 16*I*A*
a^3*b^2 - 12*I*B*a^2*b^3 + 16*I*A*a*b^4)*cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8
/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(3*I*B*a^4*b - 5*I
*A*a^3*b^2 - 6*I*B*a^2*b^3 + 8*I*A*a*b^4 + (3*I*B*a^5 - 5*I*A*a^4*b - 6*I*B*a^3*b^2 + 8*I*A*a^2*b^3)*cos(d*x +
 c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3
*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*sqrt(
2)*(-3*I*B*a^4*b + 5*I*A*a^3*b^2 + 6*I*B*a^2*b^3 - 8*I*A*a*b^4 + (-3*I*B*a^5 + 5*I*A*a^4*b + 6*I*B*a^3*b^2 - 8
*I*A*a^2*b^3)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weie
rstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x +
c) + 2*b)/a)) - 6*((A*a^5 - A*a^3*b^2)*cos(d*x + c)^2 + (A*a^4*b + 3*B*a^3*b^2 - 4*A*a^2*b^3)*cos(d*x + c))*sq
rt((a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/((a^7 - a^5*b^2)*d*cos(d*x + c) + (a^6*
b - a^4*b^3)*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))/((a + b*sec(c + d*x))**(3/2)*sec(c + d*x)**(3/2)), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x))/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(3/2)), x)